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an important requirement of all Ph.D. candidates is

preparation and defense of what is known as the "first

proposition." The proposition is intended to be a review of

the literature relevant to the subject of the dissertation,

4 and an outline of the goals and methodology of the

dissertation. In the present case Hr. Stuart Kara submitted

such a proposition last fall. Because it contains a unique

review and assessment of the literature dealing with bubble

growth and collapse, we have slightly modified his

proposition and have prepared from it the first Technical

Report for this contract. The report is of a review nature.

Hovever, in Section Iv we have carried out some computations

to show regions of agreement and disagreement between

published theory and experiment. Section V is a description

of proposed theoretical and experimental research, some of

which is currently underway.
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I INTRODUCTION

Cavitation - the formation and subsequent behavior of

gaseous volumes, usually in a continuous liquid phase - has long

occupied a prominent position in engineering theory and practice.

The damage resulting from aquatic cavitation may be the premier

example of the practical importance of this phenomenon. as a

result, the study of naval architectural hydrodynamics in

particular remains a very active field in which the limited

reproducibility and questionable direct applicability of

laboratory work continues to challenge workers.

In reviews by Plesset and Prosperetti [65] and Acosta and

Parkin (1] a natural concentration on aqueous systems is

apparent. Yet, even for this specific Newtonian fluid, the role

of geometry, both macroscopic and microscopic, and numerous other
possible design variables, remains unclear. also, two competing

regimes which divide the field exist: nucleation or microscopic

inception, and bubble or cavity dynamics. The relative

importance of each regime varies according to the specific

circumstances.

The phenomenon is further complicated by the introduction of

dilute macromolecular solutions into experimental systems.

Cavitation inception in flow past blunt bodies is definitely

inhibited. To measure the state of liquid flow at which

cavitation appears, an "incipient cavitation aumber," a , has

been defined
PP

= P P4

i 1/2 po Va

where P is the local free stream static pressure, P the liquid
s v

vapor pressure, p is the liquid density, and V the free stream
0

velocity. Ellis, St. LJ C 25, 27] have experimentally found a

reduction of a by as much as 70% from its value for tap water

for a solution of 300 ppm Guar gum.

That this cavitation inhibition is not merely a nucleation

effect is demonstrated by the change in appearance of the

cavities upon formation. Ting [83] shows photographs which

display cavities which are smaller than their counterparts in



pure water. Boyt [43] and Ellis, 91 j1, (26] have also commented

on this qualitative change in the nature of the cavities.

Ellis and Ting [26, 84] speculated that this cavitation

suppression is a manifestation of the elastic properties of a

aon-5etonian solution which night similarly inhibit the growth

of an individual cavitation bubble. To test this hypothesis,

they investigated the spherically symmetric growth of a single

bubble in an otherwise quiescent dilute polymer solution (81, 82,

84]. Agreement between theoretical analyses and experiments was

good, but in both the presence of the macromolecules retards'

bubble growth only slightly. Since this retardation is

insufficient to account for the cavitation inhibition in flows,

another approach must be taken.

Dilute polymer solutions can have strong, and often

unexpected, effects on the velocity field of a flow. acoustic

streaming is a prime example [15]. In this case the direction of

the secondary flow generated by an oscillating rod is actually

reversed by the addition of a small amount of polymer.

Theoretical analysis has shown that this reversal is consistent

with the stresses introduced by the viscoelasticity of the

liquid. Thus, there is a strong possibility that the alteration

of overall flow field reduces cavitation effects by changing the

stress field around the point of cavitation, both before and

after nucleation. A successful analysis of cavitation inhibition

is, therefore, expected to require inclusion of the overall flow

along with non-Newtonian elastic effects.

The model system proposed here is a single cavitation bubble

growing in a specified undisturbed flow of a non-Newtonian fluid.

Any analysis of this system involves a coupling between fluid and

flow which necessitates the synthesis of manifold disciplines.

One is Newtonian bubble dynamics, which has, historically, dealt

most completely with spherically symmetric flows. Here, it is

necessary to understand the relative importance of the numerous

physical effects and parameters which arise. In addition, the

Imposed flow will often invalidate any assumption of spherical

symmetry so the extensive work on small drop deformation, slender

2
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body theory and singularity analysis may be applicable. To

include non-ewtonian effects the various constitutive

formulations and formalizations should be evaluated. Previous

applications of these constitutive relations, particularly to

bubbles, are especially important.

In subsequent sections, each of these subjects will be

treated in some depth. In addition, several preliminary results

attempting to evaluate the importance of various physical effects

and to extend some other results will be presented. Further

steps of a similar nature are also proposed. Finally, the more

ambitious plans for this research are presented. These include

some rudimentary ideas for experimental work which will, it is
hoped, give guidance for theoretical work and, ultimately,

confirm any analytical results.

3
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11 flWTONI& BUBLEfj D!UAflICI and 2 " DRMkL&i2

Just as most subsequent researchers have been motivated to

study bubbles by interest in cavitation damage, Rayleigh E72, 50]

found this field sufficiently appealing to perform the first

analysis of bubble dynamics. He solved the problem of the

collapse of an empty cavity in a large mass of liquid.

Neglecting surface tension, fluid viscosity, and any thermal

effects, and assuming spherical symmetry, his result can easily

be derived from the equations of motion as

3 .2 p(R)- p2
RR + -P =(2)

2 p

where p is liquid density, p is the pressure in the liquid far
m

from the bubble, and p(R) is the pressure at the bubble boundary,

which is also assumed to be the pressure throughout the bubble.

The specification of an incompressible fluid implies that the

velocity within the liquid is given by

u (r,t) = -r (3)

The neglected surface tension and viscosity terms can easily be

included to give a "generalized Rayleigh equation" (65]

3 .2 1 2 a 4 , (4)
2 R 1 - R

where p. is now the pressure inside the bubble which is assumed
I

to be homogeneous, and a and , are the surface-tension constant

and liquid viscosity, respectively. In the genoral situation,

both p and p. may be functions of time (or of R) and a and A may

not be constant. It is also important to emphasize that

spherical symmetry is assumed to persist throughout the process.

For pure water, a and , are weak functions of other physical

parameters, such as temperature. This has allowed successful

modelling under the assumption of constant values for those two

coefficients. However, the composition and behavior of p. with

the evolution of the bubble is not so simple. Plesset [65] has

delineated two categories of bubble dynamics which he has

labelled gas bubbles and vapor bubbles. Gas bubbles are those

cavities for which the medium in the interior is largely or

4



completely a permanent, noncondensable gas. For iapor bubbles

the gaseous phase consists almost entirely of the vapor of the

surrounding fluid.

Gas bubbles have been extensively investigated, particularly

in the areas of surface oscillations and mass diffusion effects

[see review 65]. They have technological applications to such

processes as plastics foaming, but, for the field of cavitation,

these gas bubbles are such less relevant than vapor bubbles.

The category of vapor bubbles is subdivided into two other

topics. The subclassification is based upon the extent to which

thermal effects alter p and thus, bubble behavior. The strong
i

temperature dependences of equilibrium vapor pressure and vapor

density act to significantly reduce p. for a growing bubble as
1

evaporation at the bubble surface cools the interior. Using an

energy balance, and assuming that heat is supplied by a liquid

layer which has thickness comparable to the diffusion length1/2
(Dt) , the "thin thermal boundary layer" assumption, this

temperature difference can be estimated as

.T 1 R 4e (T) LAT = - --- (5)
3 (D t)I'l pc e

where L is the latent heat of evaporation, p (T) is the
v

equilibrium vapor density at temperature T, D is the thermal

diffusivity, and t is the time required to grow to radius R. For
o -3 o

water at 15 C, with R=0.1 cm, and t=10 sec, AT= 0.2 C, while at
o 0

100 C, AT= 13 C. For the former case, in which the thermal

effect is not expected to be important, the proper term is

"cavitation" bubble. In the latter, and all cases where thermal

effects dominate inertial effects, the result is "boiling" or

"vapor" bubbles.

The cavitation bubble is the simpler case since, with

complete neglect of thermal effects, p. = p = constant. Then,
i V

for a constant p and neglecting viscous effects

.2 Re 3.2 2 p,-p. 1 _ R 3]- 2 3e 21 0 3 p 1 T' o

where initial values are signified by the subscript zero. For

fi 0 and again neglecting surface tension, the Rayleigh result

5



for time to complete collapse is

r(5/6) 3P -1/2 P 1/2
t = [ • B = 0.915 ( ) R (7)

0 r (1/3) 2 (p, -p ) 0 P,-pv 0

Quantitative experimental confirmation of this value was given by

Lauterborn (52]. ae was able to generate "empty" cavities by

focusing a pulse from a Q-svitched ruby laser on a point on the

interior of a liquid mass. Agreement between experiment and

equation (7) was excellent, despite the actual compressibility of

the liquid. Note that this compressibility is expected to become

significant in the final stages of collapse, when the Mach number

of the bubble wall becomes large.

To analyze the more complicated vapor bubbles, it is

necessary to solve the energy equation along with the coupled

Rayleigh equation. Plesset and Zwick [66, 67] found that under

the assumption of a thin thermal boundary layer, the temperature

at the bubble wall is approximately

D 1/2 Lj' t RL (x) B(x)

k x=o [J'; f (y) dy ]'/L

where T is the temperature at infinity, D is the liquid thermal

diffusivity, L is the latent heat of evaporation, p' is vapor

density, and k is the thermal conductivity of the liquid. The

growth of the vapor bubble is governed by numerous parameters,

including A which gives a linear approximation to the

relationship between vapor pressure p (T) and T
v

p- (T) P A (T- T) (9)

P
where T is the boiling temperature at pressure P . Otherb o
constants are defined as

2a 1/2a, ( -r-T) (10OA)
P o

ALpI D 1/2
= ( ) (loB)3kB,. e

and p, which is implicitly given as a root of

2 + 3 S( g) 1/2 - 1 = 0 (10C)

If the mechanism by which growth is triggered from an initial

equilibrium radius B is a constant heat source per unit volume
0

6



of strength a, such that

= at (1OD)

then the bubble evolution can divided into four regimes [93].

The two most easily understood are the first, a "delay" period,

and the fourth, where growth approaches an asymptotic limit.

The initial growth occurs when radial increase is so rapid

that the change in bulk temperature, which follows from equation

(10D), is insignificant. To first order, the solutions to the

governing equations are

B =R [1 + ex2vt}110 p( 3 oL+ 1 ) exp(apt) (1A)

Re-, a 2,r (1-0)

T(F) = T - A exp(apt) (11B)

where 3 2

= (A Da)/(, R k) (12)
0

The delay period is very short, but results in a new value of R,

slightly larger than B , from which "important" growth begins.
0

Vhen R>>R , the heat diffusion has a limiting effect on R.0
A consistent solution to the equations of motion and energy which

takes into account the delay period is generated using an

asymptotic expansion. The leading terms of this solution are

2 at 1/2 -1/2
- R (- ) (--) [ 1 + O(t ) ) (13A)

T = T - a ER 1 + O(t ] (13P)
o A

The two intervening regimes can be, thought of as intermediate

behaviors necessary for patching together the first and last time

periods. notice that R a t is a decreasing function of time

in the asymptotic regime.

7



A The large magnitude of

the thermal effect on boiling

bubbles is illustrated in

figure 1. Here the

theoretically predicted radius

vs. time profiles for the

Plesset analysis is shown

E along with the Rayleigh result
!!a 0

for water at 103 C. Excellent

. -L,.M. WOR(T, UWG I experimental agreement with
the Plesset prediction was

found by Dergarebedian (23].
'PemMMNTALtT'I€-._," He used a Q-switched ruby

laser to generate bubbles

under conditions closely

o A I I I , , a I , , , . approximating the theoretical
c0 CI situation.

FIG. 1 [231

Zwick and Plesset [93] have also analyzed the collapse of a

bubble including the heating effect caused by condensation of the

vapor.

8



Here numerical techniques AO

are definitely required --- RAYLEIGH SOLUTION

since the expected large - SOLUIO WITH VAPO "Tin

temperature differences 32
do not allow simple
analytic expressions for
vapor pressure or vapor 4

density. Evidently, the
time scale for collapse

is so small that the U

dynamics of the process

vary only slightly from

the Rayleigh solution

(See figure 2).

0 j 43 . A
I - MILLISECONDS

FIGURE 2 (93, P.3238]
These analyses all contain the premise of a spherically

symmetric bubble. Plesset [61] initially performed a linear
stability analysis on the nearly spherical interface between two
immiscible, incompressible, inviscid fluids. He assumed an
initial drop shape given by

r = R + a(t) Y (14)
s

where Y is a spherical harmonic of degree n (50, 54, 88, 92] and
0a is initially small. The analysis proceeded conventionally in

order to determine the conditions for which a(t) will grow,
implying the shape is unstable, and those for which it will not,
implying stability. One finds that

a(t) = .(t) (.R&).. )3/2
R

with "- G(t) a = 0 (16A)

3 M R 3 a(n-1)PL-(n+l)(n+2) ,G(t) :T-- * 3 . .-
4 R 2 n pl,1  (n+ ) , (1 6)

9



(n-1)n (n+ 1) (n+2) v/R

R[np* + (n+1) PSI
where a is the surface tension constant and 1 and p are the

fluid densities of the interior and exterior liquids,

respectively. Thus

G (t) < 0 promotes stability

G(t) > 0 promotes instability. (17)

This means that surface tension always has a stabilizing effect,

and from (15) , increasing R or bubble growth is seen to have a

stabilizing effect, while the opposite, bubble collapse, promotes

instability.

Plesset and Mitchell [64] then performed a more involved

analysis for a vapor cavity, neglecting the density of the vapor

and the viscosity of the vapor and the liquid. Results showed

that, for an expanding vapor cavity, if Ia(O) I/R << 1, then
0

Ia(t) I/R (t) << 1. For a collapsing cavity distortion amplitudes

remained small so long as 1.0 ?! R/R > 0.2, but as R-*O, a(t)-1/4 o
increased as R * Thus the spherical shape is unstable for the

later stages of bubble collapse. These trends are valid even

when a small viscous effect is included in the treatment (70].

Viscosity does tend to damp the growth in amplitude of the higher

order harmonics.

To determine bubble shape stability, no characteristics of

the deformation beyond its existence and magnitude were

necessary, a direct result of the far-field conditions. The

bubbles were assumed to exist in an infinite fluid, quiescent

apart from the direct effects of the cavity; this is a

spherically symmetric geometry giving an equilibrium shape with

similar character. Of course, this is not the only circumstance

in which a bubble may arise. There may be conditions imposed on

the fluid away from the bubble, such as an elongational flow or a

solid boundary, or the bubble may be initialized as nonspherical

and a detailed description of its evolution desired. Bubbles

have provoked some study in this regard, but more often liquid

drops and solid bodies have been examined, giving rise to general

techniques for nonspherical shapes.

10



For bubbles and all initially spherical bodies in an imposed

flow, the primary method of study has been expansion of the

velocity profile in terms of spherical harmonics (76]. Use of

this method is predicated upon an assumption of creeping flow, at

least in the immediate vicinity of the bubble. Under this

restriction, Happel and Brenner (38, sect 3-2] offer a practical

presentation of the use of spherical harmonics, Lamb's General

Solution [50]. The pressure field must satisfy

V2p= 0 (18)

This suggests expanding p as a series of solid spherical

harmonics p
n

p E p (19)
n = - o n

Then Lamb's General Solution for velocity I is

- (n 3) 2n
Iw = 2: [Vx(IX ) + V*, + (n3 Vp - n ~ E]

n=-- n n 2 M(n+. 1 ) (2n+3) n a(n+l) (2n+3) n
(20)

where X and * are each solid spherical harmonics given as the
n n

series of solutions to
2

T V' = 0 (21A)

V.V = 0 (21B)

Bappel and Brenner proceed to describe the determination of the

p., IX and 4 for given boundary conditions.1 2. i
Einstein [24] was able to calculate an equivalent viscosity

* for a dilute suspension of rigid spheres without using

spherical harmonics. His result

5 3. 0 + . 1 .- a )(22A)
23

a << 1 (22B)

where q is the viscosity of the dispersing fluid and a is the

volume fraction of spheres, was rederived using a harmonic

expansion by Frdhlich and Sack [32]. They were also able to

calculate the viscous and elastic properties of a substance

equivalent to a dilute suspension of elastic spheres in a steady

elongational flow. The non-rigidity of these elastic spheres

introduces the need to calculate the deformation which would

result if these same stresses were present for the elastic

11



spheres. In assuming this to give an accurate description of the

non-sphericity, the deformation is required to be small and not

to perturb the flow significantly. In considering the behavior

of a viscous drop in the flow of a viscous, Newtonian fluid, two

important parameters are found to be

A -Z*/S (23A)
0

k = e/ Ga (23B)
0

where p* is the the viscosity inside the drop, m , that of the

surrounding fluid, a the surface-tension constant, a is the

radius of the drop and G some measure of flow strength. Taylor

(78] discussed the result for a simple shear flow, and found two

limiting cases. For the first, with A=O(1) and k>>1, termed the

interfacial tension dominated case, the drop deforms, to
0

order(1/k), into a spheroid with its major axis 45 to the flow.

For the second, with k=O(1) and A>>, to O(1/A), the major axis

is aligned with the flow. Taylor and Acrivos [79] found that a

falling drop was deformed into an oblate spheroid when surface

tension dominates, and has spherical caps as surface tension

becomes less important. They also performed higher order

calculations by re-evaluating the flow around the deformed drop.

A general time dependent flow containing a viscous drop, and

other, more specific, flow situations have been analyzed by Cox

[20], Frankel and Acrivos [31], Barthes-Biesel and Acrivos [4],
and others (36, 37]. The viscosity ratio A (23a) and ratio ot

surface tension to flow strength k (23b) remain important

parameters. In the notation of Cox (20], the deformed surface is

given by

r = 1 + rf(r /r) (24)i

where e is a small parameter. The function f is expanded in

terms of spherical surface harmonics as

f Fr) (25)
pq ar~ar, r=1

Hakimi [36] presents experimental results which compare well with

theoretically derived values for I F His work made use of an
pq

12



orthogonal rheometer to generate flow fields with variable

contributions from vorticity and deformation. Despite this

success, there is 'some confusion" among various workers about

the equations to be solved in determining the V . lallison [71]

attempts to unify these differing results, ld in so doing

concludes that, within the range of validity of this analysis,

there are at least three special cases in which an equilibrium

shape may be achieved. These special cases are:

leak flow - k>>l with A-o(k)
High viscosity drops - A 1 with kno(A)

High viscosity with comparably weak flow - k, A>>1

For bubble dynamics, only the first case may be useful.

0

Cmaio o ezeimtdeterine boble dapm (op. gird,) a.
eoliape of spherical bubble near a plane mliiJ we with thcaical eurves taben It~
Phle & Chapman (1971) (solid curves). The hraamin rate is 300000 fhamesea the msan-

*mmbubble radius , - 3.6 ram, th distan.of the ltubble omntiw from the well.
* - 39 mm md bIR, - 1'..
Curve 0 1 3 3 4 5 6 7t
Tino, Rjm(peJAp)I 0 0-73 0-835 0"61 0"461 1016 1036 1036

(A is the demit of' the liquid adla is the eoenstnt difaeasea between the ambisat
liquid premur. and the praem.. in the amit.)

FIGUPR 3 [63, P.396]
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The presence of a solid boundary in the vicinity of a bubble

alters the flow created by the cavity dynamics. In the collapse

process a cumulative jet is formed which may be one of the major

causes of the destructive action of cavitation. Experimentally,

the jet has been observed in laser-induced babbles E53], with

qualitative agreement achieved with numerical calculations [ 65]
(See figure 3). The theoretical model, however# does not

generate jet speeds sufficient for the destruction encountered in

practice, so that other factors such as nonspherical initial

shape have been investigated [70].
An initial nonsphericity is important even in the absence of

an imposed flow or solid boundary.

The requisite

mathematics has been

put forth by Hsieh

[45], who includes

equations for heat

and mass transfer

effects,

compressibility and

suggests variational

methods. Simplified

numerical results by

other authors [17] . Ifu., m-g,
ftbMe swewee "rm eae A

show that an

initially prolate

spheroid (figure 4a)

will form two jets

upon collapse, while

an oblate spheroid

(figure 4b) leads to

a dumbbell form.

These nonlinear

results were b&s se.m fm mob

compared with the FIGURE 4 [171"
linear theory

14



developed

by Plesiet and litcbell (6 1] in their detailed stability

analysis and good agreement was found until the final stages of

collapse.
The success of the linear analysis in predicting bubble

behavior even for large deformations is a pleasant surprise.

However, such analyses, which begin from perfect spheres, cannot

be expected to have such a large range of validity. Even the

cited linear analysis eventually becomes invalid. Nonetheless,

these shapes are important; there is a strong possibility that

bubble dynarics will generate highly deformed shapes in certain

imposed flows since the small vicosity ratios x (23a) present do

not result in a "small deformation" equilibrium, in the sense of

Rallison [71], unless the flow strength is very low, or surface

tension dominates. The most common method for dealing with

highly deformed bodies is called slender body analysis. The

theory neglects inertial effects and, as the name suggests, has

been created for flows around long, slender, solid bodies

characterized by small thickness ratios x.

a = b/i << 1 (26)

where the cross-sectional radius is of order b, and 1 is the

length of the body.

Slender body theory was initiated by Burgers [13], when he

attempted to determine the forceon a long, slender ellipsoid ot

revolution at rest in a uniform translational motion G. He beqan

the analysis by assuming the disturbance produced by the body was

like that which would result from a line of force on the symmetry

axis, which is of magnitude

2 4
f(z) = A + A (z/a) + A (z/a) Izl<ao z) 0 2 1427
f(z) = 0 Izla

where a is the semi-major axis, z is the distance along the axis

from the center of the ellipsoid, and A 0, A , and A are

constants. He was able to derive

f 4 sp- (28)
ln(2a/b) - 0.5



which is the limiting form of the result obtained for spheroids

of finite cross-section. Subsequent efforts in this field by

other workers have extended this type of analysis to non-uniform

cross-sections [6], shear flows (21(2)], and even curved axes

[21(1) ]. In all cases, the intended result is the function F(z)

which best matches boundary conditions, and is often obtained

using matched inner and outer expansions. From V(z), the forces

and torques on the body can be calculated.

A sinqle function P(z) can give exact results only in the

limit as x->O. This function F(z) can equivalently be considered

the distribution along the axis of point singularities in the

flow field, or Stokeslets [5]. The velocity and pressure field

due to a Stokeslet F [11] isI

SP I- i (29A)

_ _ (29B)
4w, r

For bodies of finite cross-section, it is only possible to

generate exact solutions to Stokes flow problems by determining

the proper spatial distribution of Stokeslets gnj the other

fundamental singularities (figure 5), which can be derived from

the derivatives of the Stokeslet [11]. Thus, just as small

deformation methods may be valid for finite deformations, the

slender body singularity technique is extendable to finite

thickness ratios. Most shapes are analyzable, at least for

Stokes flow and rigid bodies.

•J m Li Lii
(CaLfOaT I

FIGURE 5 [11, P.25]
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III NON-NNTOIAN EFFECTS

many instances of seemingly anomalous behavior of

non-Newtonian fluids are well-documented. Two of the most

commonly cited examples are rod climbing or the Veissenberg

effect E8, P.921, and extrudate or "die" swell [8, P.102].
Schovalter [74] emphasizes the "counter-intuitive" nature of

these effects, and explains that this is a consequence of the

Newtonian character of that very common fluid, water, which is

the basis for such intuition. While water, and all truly.

Newtonian fluids, exhibit no elastic forces, non-Newtonian fluids

often do, and the existence of such forces can be used to explain

many of the unexpected effects.

Several of these effects can be viewed as exhibitions of

fluid properties which are also relevant to cavitation

inhibition, particularly those properties which involve a free

surface or result in a macroscopic alteration of the flow and/or

pressure field. In the first cateqory, examples include:

jet stability - in a Newtonian fluid, breakup of a free

jet occurs in clearly defined waves. Such definition

is not apparent for fluids which exhibit elastic

properties (74, P.3).

open channel flow - for many non-Newtonian fluids, the free
surface of the liquid when flowing down an open,

inclined channel is convex, it is virtually flat for

the Newtonian case [8, P.105].

Demonstrations of the second type of effect are necessarily more

involved, requiring some flow visualization or measurement

techniques. Yet there are good examples, including:

secondary flow induced by an oscillating cylinder - as

previously cited, Chang [15] observed reversal of

secondary flow (figure 6) for polyacrylamide solutions

as dilute as 20-30 ppm. Be also found the situation

amenable to analysis.
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0

Secondary flow produced by a long cylinder oscillating normal to its axis. The
cylinder is viewed on end and the direction of oscillation is shown by the double arrow. () A water/
glycerin mixture moves away from the cylinder along the axis of oscillation. @ The direction of the secon-
dary flow is reversed when 100 ppm polyacrylamide (Separan AP 30) is added to the water/glyocrin
mixture.
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flow past a flat plate - -- VEOAM

experimental results 14 I's 
t ,

141] show definite 'X
changes in particle V4

position (figure 7) and

fluid velocity (figure Yi3 -

8) when a Newtonian
liquid is replaced by a o9

0viscoelastic fluid in a c

flow with this simple KP

geometry.

0
DISTANCE DOWN THE PLATE (X

Schematic diagram of observed Iae-
matic behavko for viscoelastic fluids.

FlGURE 8 [41, P.257)
Finally, a most puzzling instance of non-Newtonian behavior, and

one which actually involves bubbles, arises in the recent

experimental work of Hassager (40]. He photographically
demonstrates the existence of a knife-edged, asymmetric "negative

wake" behind a bubble rising in a non-Newtonian fluid. There are

many unanswered questions here, most of which have relevance to

cavitation inhibition.

To theoretically analyze the flow of any material, it is
necessary to construct a model, which, if successful, will
"accurately" predict the stress field in that material or class

of materials under varyinq conditions of motion. Such a model is

called a constitutive equation and is often formulated to

determine the stress tensor I for given material conditions,
present and past. The constitutive equation must satisfy

numerous physical principles and ideally will cover a broad range

of materials, but this breadth should not impair its practical

applicability.

For non-Newtonian fluids, any attempt to formulate a

generally applicable constitutive equation is complicated, and

often stymied, by the negative nature of the definition of this
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class of matter -

Boa_-e12gtoaS [JgLj: all fluids which are not Wevtonian.

Under the constraint of incompressibility,

T.w = 0 (30)

where ! is the vector velocity in the fluid. The constitutive

equation for a Nevtonian fluid is
S =-p; + T (31.A)

T
- + * (V. + (TY) 3 (31B)

where p = -(1/3) tr S, T is the extra stress tensor, and p is the
Newtonian fluid viscosity. For a sufficiently simple flow, the

essential feature of this relation can be rewritten as
r =  'e (32A)

where r is now the extra stress, * is strain, and the dot denotes

time differentiation. A similar relationship for a purely

elastic material is

T = Ke (32B)

where K is the elastic modulus. The presence of viscous forces

and elastic recovery in many non-Newtonian effects suggests the

combination of these two constitutive relations to describe

non-Newtonian behavior. Connecting elements exhibiting viscous

damping and elastic recovery in series, the Maxwell element,

figure 9, arises, with its constitutive relation

r + A = u e (33)
0

Other simple combinations of the elastic and viscous elements

result in other linear viscoelastic equations, including

v + A; = t (e + Ae) (34)
Further sophistication is possible by including multiple values

of viscosity and modulus; the adjustment of these values allows

better agreement with certain experimental data.

FIGURE 9 Maxwell Element

The two equations (33) and (34) are differential
representations. The Maxwell element can also be described in
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integral form as
t

v(t) 2 (A/A) I exp[-(t-t')/A] e(t') dt' (35)

This integral form introduces the notion of a .mray fuaction.

The exponential kernel of the integrand weights the contributions

to ,(t) by the strain e(t') at past times ts. By its

mathematical properties, this exponential memory function places

more emphasis on recent values of e. This distribution satisfies

a common-sense concept formally stated as the principle of fading

memory.

These linear viscoelastic models, which employ simple time

differentiation, cannot be generally valid because they do not

satisfy another prescription for constitutive equations, the

principle of material objectivity. The mathematical criteria for

satisfaction of this principle are complex, but the concept is

simple; the behavior of a material as calculated for a given

model must be independent of observer or frame of reference. The

lack of "frame-indifference" of equation (33) means that the

calculated response of a material which obeys this equation, when

placed on a rotating table, would vary with the rate of this

rotation, even when inertial and relativistic effects are

neglected.

Another way to view this difficulty with an equation like

that for the Maxwell model is to recognize the ambiguous nature

of any measure of relative strain for non-infinitesimal

deformation. To illustrate, consider a bar of length 1 which is

stretched to length l+Al, figure 10.

i z:iFIGURE 10

STRAIN

I-I+AI -
In the limit of infinitesimal strain, as &I-0, the relative

strain is given by two equivalent expressions

Al Al
lim = (36)
al-*O 1.l
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However, if Al increases, these two expressions are no longer

equivalent, and there is no natural choice between them which is

generally valid. To use such measures without discrimination

implicitly restricts their validity in flow to infinitesimal

relative strain.

The restriction to infinitesimal relative strain is a first

example of the specificity of certain models to limited types of

flow. The intimacy of the relationship between flow and material

behavior is illustrated' very well by the simplification of S

which obtains when the tensor is evaluated for a common class of

flows, steady laminar shear flows. Steady laminar shear flows

are characterized by a geometry which grants a natural orthogonal

coordinate system. The flow is restricted to having a velocity

in only one coordinate direction, labelled 1, which varies with

respect to only one other direction, 2. If the extra stress J is
defined for an incompressible non-Newtonian fluid as it was for

the Newtonian case, (31A)

(t) = Sit) + P1 (37A)

1
where p = - - tr S (37B)3
Then restrictions on T can be found from components of the

general equation of motion

Dv
p - = pSL - grad p + div T (38)

Dt
The result is

12)T = 1111 22) 0 I
0 t(33)(39A)

tr T = 0 (39B)

Also, T can only vary with the shear rate s and is symmetric.

Thus, three material functions, ,, N , the first normal stress1
difference and N , the second normal stress difference,

completely specify the tensor T. In one notation (74], they are

given by

(c) = t(12) = t(21) (40&)

N (K) = t(11) - t(22) (40B)1

N () t(22) - t(33) (40C)
2
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0* dv /dx (4OD)

1 2
For a Newtonian fluid, both normal stress differences are zero.

It is the non-zero value of these quantities which is manifest in

such instances of *counter-intuitive" behavior as the Veissenberg

effect. These values can be measured. Commonly employed

viscometer flows are analyzable as steady laminar shear flows,

and have predictive value.

The characterization of a non-Newtonian fluid afforded by

measurement of the three material functions (40), although useful

and relatively simple, is not complete; the degeneracy in T and

exclusive dependence on shear rate £ is flow-specific. The

simple linear viscoelastic models are also useful, but
unsatisfactory in a general situation. These complications

suggest a "retreat" to more basic properties and to a foundation

for a constitutive equation or model. Noll [55, 85, 86] has

presented the most elegant treatment. His formulation for the

most general constitutive equation for a body is

(xt) =) (t,x1)

where it (X) is a functional of the motion of the body from all

past time to the present time t. By invoking physically

reasonable assumptions, and retaining the defining equations

(37a) and (37b), Noll postulates the constitutive relation for an

incompressible simple fluid

X Tt) = [_ ) ( s)] (142)

where 14 is a functional, C (s) is related to the relative(t)
deformation qradient, and s is a dummy variable used to denote
the dependence on all past time. This constitutive equation is

simple in form, elegant, and contains only a few restrictions.

If more assumptions are made, equation (42) assumes a more
specific form. Rivlin and Ericksen [73] restricted the time

dependence of T to s--0 (near the present) and performed a series
expansion. In their notation

7.(t =  (_z A2 ... , )(43)
1 n

where the . are the Rivlin-Ericksen tensors, functions of the
i
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velocity gradient L, given by

T n-1 n T
A = E + ( i (44)
nn i=1 i (n-i)

A form such as (43), though more restricted than that of (42) is

still not very useful, and special cases must be examined. If

the dependence on all Rivlin-Ericksen tensors higher than the

second is suppressed, and F meets certain mathematical

conditions, it can be expanded as
2 2

a eA +*ae a. A~ +. + A + A A) + (145)
0 1 1 2 2 1 3_2 4 12 2 1

Despite all of these restrictions, equation (45) is still

cumbersome and in practice it is often truncated after two terms.

This yields the equation for a "second order fluid," which has

been found to be of value in some circumstances.

Another approach to constitutive equations has been

motivated by the usefulness of the linear viscoelastic equations

and the existence of some physical meaning for the constants.

For general situations, it is necessary to modify these equations

so that they satisfy material objectivity. Oldroyd (56]

recognized that the problem originated in the taking of the time

derivative for a coordinate basis which is fixed in the

"laboratory" reference frame. He suggested manipulations with

respect to coordinates inherent to the body. The result has been

the formulation and use of many specialized types of derivatives

which are implicitly materially objective. These include the

codeformational derivative and the corotational or Jaumann

derivative. The Jaumann derivative is given, in tensor index

notation, by

3 k k k
-a *va - . a - w a (46)

t at ij ij,k kj j ik

where v is the velocity and w vorticity. Many constitutive

equations have been formulated using these derivatives [8],

including the corotational Jeffreys model

I A - = 2  + ( A • 2 ) (47)

where p is the rate of deformation. From consideration of the
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applicable mathematical properties, Oldroyd added nonlinear terms

in T and P to give the Oldroyd eight-constant model which, in

Cartesian coordinates, is

(I4.a- It - 0t a - (t d + t di v* t d a
It) tij *okkdij 1 ik kj kjdik I k1dklij

2  - 2d d d d e (48)

ij 2tij "2ikkj '2 klklij
where t and d are the components ofT and D, respectively.

JUSi as diflerential forms such as equation (33) suggest

integral forms like equation (35), corotational derivatives such

as equation (46) can be utilized in materially objective integral

equations. Such equations can be generalized, in a manner
similar to the generalization of the corotational Jeffreys model

to the oldroyd eight-constant model, to give the Goddard

memory-integral expansion

t t tT=-$G (t-t'}j'dt' -(1/2)f f GII-1tt)r-" "1'd~t
-I I

t t t

(1/2) f f f2G II(t-t',t-t",t-t*)r'r":r0 (49)

SG IV ttt,-t j' . " .j1-.j1]}dtdt4dt'-..III

where r" is a generalized strain tensor at t", and the G , G
G , etc. are an infinite series of kernel functions.III

These are only a few of the many constitutive equations
which have been formulated. More extensive compilations can be

found in sources such as Bird, et al. [8]. Several different
models are still necessary because no single formalization has

been conclusively demonstrated to be preeminent; the usefulness

and applicability of each is often flow-specific and imperfect.

Despite these limitations, in a given flow situation it is often
possible to characterize a fluid sufficiently so that

semi-quantitative agreement and prediction can be made.

Critical evaluation of constitutive equations has been

hampered considerably by experimental constraints. The most

common experimentally achievable flows are vicometric. These are

usually approximations to steady laminar shear flow, with the

resultant simplification of the measurable extra stress tensor T,
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see equation (39). The degeneracy in T results in a degeneracy

in constitutive models; several predict the same behavior, which

leaves no basis for comparison. This has led experimentalists to

attempt to generate non-viscometric flows, particularly

elongational flows. A mumiazial elongational flow is defined by

velocity vector and rate of deformation tensor of the form

= (vlX1 ),-v (x )/2,-v (x3 )/2] (50A)

1 (5 )
01 00-

where • is the elongation rate. One characterization of a

material under this type of flow is the elongational viscosity "
e

= t(11) - t(22) (51

e e

The value of the elongational viscosity for a Newtonian liquid is

three times the value of the shear viscosity. Rost experimental

techniques to measure q have been restricted by mechanicale
difficulties to the testing of high viscosity polymer melts with

6
high shear viscosities, , >10 poise, at low rates of strain,

-1 -1 0
S<10 sec [22]. These restrictions do not apply to a technique
which employs bubble dynamics in a non-Newtonian fluid.

Pearson and Middleman [59, 60] have experimentally observed,

and theoretically analyzed, the collapse of a spherically

symmetric cavity in a viscoelastic fluid. In spherical
coordinates this is easily seen to be a uniaxial elongational

flow and kinematic considerations lead to

S 2 RLB (52)
C -

rs

in equation (50b), where the notation of section II is retained.

The Rayleigh equation (4) for a general fluid becomes

3 .2
P(RR + -R ) = p(R) - p + [T.T]dr (53)2 i r

Various mathematical representations of T can then be used to

predict bubble behavior. These workers chose to analyze several

models, including three-dimensional versions of the Haxwell

equation (32) modified with codeformational (CD) and corotational

(CR) derivatives. They attempted to approximate , and presented
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results in terms of a "bubble pressure function," * given by

0 W -(3/2)(p - - (54)
i R

which is also expressible in

terns of initial values of

t(11), t(22) and the material

constants A and p in (32).* h

Experimentally, the apparatus h"
schematically represented in D h

figure 11 was utilized and

bubble behavior recorded S

photographically. The resultsI

for these models and L

experimental trials are shown r

graphically in figure 12 for a
solution of 2.y by weightI
hydroxypropylcellulose in Sketch of typical experimental bobble shape showing dime,-

water. *sions needed for The date aalyuis.

FIGURE 11 (59, P.718]

As eincreases, the agreement between theory and experiment
progressively worsens. The codeformational model fails in even a

gross qualitative sense for the higher elongational rates. This

led to an analysis employing more complex models, including a

modified corotational Maxwell fluid and an integral model, which

gave much more accurate predictions.

27



FIG.12 [601
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Yon-Mevtonian effects in a Situation in which departures

from sphericity become important have been analyzed by Wagner and

Slattery [91] as an extension of previous work for Wevtonian
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droplets in a uniform Nevtonian flow [79]. This particular

situation involved slow flow of the fluid, which allows a

perturbation technique to include inertial effects. A second

perturbation was then utilized to include non-Newtonian effects.

The constitutive model employed for both inner and outer fluids

was the livlin-ricksen fluid (43) of grade 3, defined by (55)

2 2
# 11 4 021 2 3 1 4 1 3 + #5[I1-k2 2k 1 6+] # 6 tr[I1]k1

(55)
which is the simplest grade to exhibit both normal stresses and

shear-dependent viscosity. Using matched asymptotic expansions,

drop shape was found to be calculable through numerous, involved

perturbation coefficients. These shapes progress from "spherical

to prolate spheroidal, to ovate with large end leading and

finally to a teardrop shape with extended rear" as velocity

increases, figure 13. These shapes are in qualitative agreement

with experimental observations. Furthermore, bubbles have been

shown to be a special case included in this analysis [39].

Ro Ru0O2P2 (L) R 1 +0.2 P2 (L)+O.4 P3 (jL)

P,.dict.d dreptel *hopes.

FIGURE 13 [91, P.1206]

Even an accurate constitutive equation, verified by

experiment for many flows, with carefully evaluated constants, is

of no value if the flow geometry of interest is too complicated

to allow fruitful analysis.
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Such is the case,* ISO
with the flows which 0 a • PM

.* 8 L sO " 90
have demonstrated

the son-Newtonian 00

effect of immediate :* 0.
interest, cavitation 1o

inhibition. The
results of Ellis, e4t OA*

A [ [27) are shown 0 0

in figure 14 for 5
flow past a
hemispherical nose,
for q i see equation oS l YNDLU M83 LU

(1). Cavitation!FIG. 14 & 15 C271
inception was bOy
measured b; ,I-? I I by

I tEOICATS MAXIM UIdetection of the o.?' RANGE OF D&TA

initial scattering
of a laser which was O0
adjusted to grazing o. ±.,
incidence on the

body. The effect ±

was noticeable for C.)

concentrations of I J
polyethylene oxide
as low as 20 ppm, as - __
shown in figure 15. 0 "o o 0 10 60o 7,0 o O ,t O

.- " CONCENTRATION OF POLYETHYLENE OXIDE ( WS SO )
IN WATER IN PARTS PER MILUON By WEIONT

The conditions under which the incipient cavitation number
is strongly reduced result in another alteration in cavitation
behavior which is as crucial to the complete understanding of
cavitation inhibition. The appearance of the subsequent cavity
is changed; the void appears smaller and clearer for the polymer
solution under comparable flow conditions.
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This change is noticeable for the

flow past a hemispherical nose used

I to generate the data of figure 14,

I but is even more apparent for a
Itit different geometry. In figure 16

A the voids created by a cylindrical
It a b cavitation inducer on a rotating
o i I
WI, disc are schematically represented

for water (a) and a dilute polymer

solution (b4.

FIGURE 16 [83, P.90C] Ting [83] takes the reduced length

of the inhibited void to be an indication of a "lover cavitation

intensity." He also notes:

In water, the appearance of the cavitation bubbles is

very violent and chaotic, consisting of many very small

bubbles. As a result it scattered much of the

incipient light ... However, as the polymer is added,

the cavity looks more transparent, and shows a regular,

smooth wavy pattern at the vapor-liquid interface [83,

P. 900 ]
This indicates that a polymer effect is not limited to the

initial stages of cavitation, and does not merely alter a

mechanism of nucleation. A strong possibility exists that a

single bubble should exhibit commensurate effects.

The simplest model system which might exhibit evidence of

cavitation inhibition, and in the process give clues to the

causes of the phenomenon, is a single bubble undergoing

spherically symmetric dynamics in an otherwise quiescent fluid.

Fogler and Goddard [29] may have been the first to analyze this

situation for a non-Newtonian fluid. Their analysis began with

equation (53), which can be transformed to

3 .2 p,-pP. 2 t(rr)
S- - - -(/p) dr (56)

2 p pRD r

A simple, linear viscoelastic constitutive equation was chosen

trr(t) -2t N(t-tl| drr(t'J dt' (57)
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and the memory function combined viscous and "Maxwellian"

components as

N(t) = 5a(t) + G (-t/A) (58)
0

Dimensionless variables and a characteristic collapse time were

defined as

T = R/R t* = t/t
0 c 1/2 ( 5 q)

Ti = Y(t ) t = R (p/p)

with the equation of motion becoming

3 .2 PL-Peft 2 4Y
YY + -y = - - -

2 p N .Y NY (60)

12N- , t* exp[-(t*-t) Y n(Y/¥) 6

for initial conditions Y(O)=1 and i(O)=0. Four dimensionless

parameters arise in this equation

A

U = - a Deborah number
De t'

N = - , an elastic number
El 

(61)

N Re= ----- a Reynolds number

ORe

S= ---- , a Weber number
We too

By initially focusing attention on fluids with long relaxation

times, corresponding to N -', the authors demonstrated a
Ce

definite elastic effect on bubble collapse. For large Reynolds

number the fluid approaches the limitinq case of a purely elastic

material and rebound short of collapse is, at least

theoretically, possible. Smaller values of N introduced
Re

viscous damping and this new mode of energy dissipation increased

the value of the radius at which rebound occurred.

This work also included some calculations for finite Deborah

numbers. In this case the void will eventually collapse to zero

radius. However, this may not be a monotonic decrease in radius

to collapse since damped oscillations may appear superposed on
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the overall reduction of bubble size. I value of N =0.51 is the
De

lover limit of this oscillatory phenomenon for specified

parameter values [I e-, p /G 0=10/7, N e -- ]. Thus elasticity

effects can have a pronounced influence on the behavior of a

spherical cavity for A/t=0(1).

The full explanation for cavitation inhibition is not this

simple because the ratio of elastic relaxation time to

characteristic collapse time in a dilute polymer solution is

expected to be much less than 1. Ting [82] performed a sore

realistic analysis by employing a materially objective

constitutive model, the Oldroyd viscoelastic fluid

D D
t + A-t -2 i"d + A-d ] (62A)
ii 1 DtiJ 2 Dtij

D a a
-b = --- b + v - b + w b + G b d b d b
Dt ij at iJ k axk ij ik kj jk ki ik kj jk ki

(62B)

For a dilute solution, the material constants in equation (62A)
can be related to molecular and component parameters as

= 1 (1 + C[,)]) (63A)
0

A = A (63B)1

A
A = --- --- (63C)2 1+C[ 7)]

c[vn] < 8 (63D)

where q is the solution viscosity. n is the solvent viscosity, A
0

is the terminal relaxation time of polymer molecules, c is the
polymer concentration, and [. is the polymer intrinsic

viscosity. The mechanism by which bubble growth is triggered

from the initial equilibrium radius R is a step change reduc+ion
0

in the ambient pressure of magnitude p*. A characteristic time
different from t defined by Fogler and Goddard (59) is employed

c
and thermal effects, as analyzed by Plesset and Zwick (67], are

included. The new dimensionless variables and characteristic

time scale are given by

I p .(T.)-p (O)S A- - n :
Sp* (64)
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t 1/2
= - t' = R (p/p*)

to 0

and the analogue to equation (60) becomes

3 .2 4I S -3Y 1 -1 1-3y
SS + -S + - - = An0 - S ) - -s (1 - S )+ H(S)

2 Re S 
0

S S (x) (x) 
S, r; (Z M (65)

(Y) dx - 2E exp[ (x-x)t/A S -

where H(a) is the Heaviside step function, v is the polytropic

gas exponent, and the new dimensionless parameters are
p*R*

W = - . a Weber number2a

aLp' D 1/2 3/2
ef= - (-) ' , which measures thermal

effects pk*(66)
B* 1/2

Re = - (p*p) , a Reynolds number

E L , an elastic number

A P*

Numerical calculations of R/R vs. time were carried out for

parameter values corresponding to a 500 ppm solution of5
polyethylene oxide (mw=L4.5x10 ) for initial bubble size

-3 O
1.02x10 cm and initial temperature T =103 C.
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Results, figure 17, show

little elastic effect. I
A/R(mec 1 )

Experimental results for a

similar situation (81]

demonstrate a comparably

mall effect. The gross

cavitation inhibition present

in flow systems is not in p%1.0 elsaet-
Zvick

evidence here. The values of 102 Theory

N used by Fouler and
De
Goddard, which did generate a

large effect, are seen to be

physically unrealistic. 10 / p'z0.4

-- -Solvent

---- Polymer

10-6 10-5 10-
4

Initial bubble growth rates in the solvent and in the
polymer solution.

FIGURE 17 (82, P.1430]

Since significant cavitation inhibition is not present in a

spherically symmetric flow, generation and analysis of more

complicated bubble geometries is indicated.

The jet-forming behavior A!

of a collapsing bubble etcDeffUonotmin

near a solid boundary was 
Deometrfcharatertcmora

observed by Chahine and bubble near a solid wl.

Pruman [14].

FIGURE 18 [ 14, P. 1406]

They defined geometric characteristics as in figure 18, and a
ra tio n -n = R /L (67)C, ma x

The addition of polymer solute seemed to stabilize the sphericity

of the cavity and to reduce the intensity of the re-entering jet

in experimental trials, see figure 1q.
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Thus, although the

mechanism is far from

clear, it does seem that

I this non-Ievtonian effect

* RUN LQUID can be observed in single
a AF YIU 0.58 DISTILLE 0WATERA" A 71J0.66JPMVlDX260PPMW \ bubbles.

S o 1. iISTILLED WATER .

ComparJson of bubble behavior in water and Polyox
solution for equivalent values of 17.

FIGURE 19 [14, P.1407]
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IV PRELIARY ANALYS12

In any attempt to find an explanation for and clarify the

major factors contributing to a phenomenon as intricate as

cavitation inhibition, it is necessary to obtain preliminary

results. These results are expected to be first steps and

half-steps toward comprehension of the techniques necessary for a

ccaplete analysis. They often ignore elements of the physical

situation which are integral to the effect of interest or

virtually duplicate previous work. The hope remains that a basic

understanding of the importance of a given factor, by its

inclusion or exclusion, will ensue.

The complete model system for this analysis consists of a

cavitation bubble changing size in a non-Newtonian fluid, while

this fluid experiences an imposed flow. Preliminary analyses in

spherical bubble dynamics seek confirmation of previous works on

the contribution of viscous, inertial, thermal, surface tension

and elastic effects and clarification of the role of each. An

imposed flow creates nonspherical bubbles, and artificial means

may be employed to study the effect of nonsphericity alone. The

imposed flow alone can also be studied, and night give some basis

for choice of a useful constitutive equation. After each element

of the system is examined individually, it is presumed that they

can be combined in a workable analysis.
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PRELINIIARY RESULTS

Viscosity and Inertia in Spherical Bubble Growth

Neglecting the thermal and elastic terms in Ting's analysis

[89], his result (65) becomes

(1) (B) (C) (D) (E) (F)

3 .2 14 i -3,v 1 -1 1-3,' Y xSS + -S + - - s -s (1 - S ) H
2 Re S W (65')

where S(a) is a dimensionless bubble radius which is a function

of dimensionless time a. The first two terms of this expression,

(A) and (B), embody inertial effects, term (C) includes viscous

effects, term (D) includes the internal and ambient pressure

difference, term (E) takes surface tension into account and the

last term, (F) arises from the step change decrease in ambient

pressure of magnitude p*, which is assumed to trigger bubble

growth. (See section III for a more complete explanation.)
Ignoring the inertial terms, (k) and (B), the creeping flow

expression for radius vs. time results. In real time, for all

t > 0,

4t' 1/R 1 3 1 -1t= -- f [x (-An + -)x + (- -)• • (1.0 • An) ]) dx
Be 1/B* W 

6x

x = 1/R 168B)

There exists *a critical value of the initial radius, B w which
0

results when
1
--- = An (69A)

c 2a
R = (69B)o p .(T*) - p .(O|

Physically, this is the equilibrium radius for a cavity

containing no noncondensable gas; i.e. it is the minimum
physically realizable equilibrium radius for a given vapor

pressure, ambient pressure and surface tension. For R = Rc

0 0
equation (68A) can be simplified to give the time for bubble
growth as

t' S - AII/(0I+an)

Be(1+an) 1 - AD/(l+An) (70)
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A more complicated general analytic solution exists for B > .
0 0

Calculated profiles are shown in figures 20, 21, and 22 for the
0

physical parameters corresponding to water superheated to 103 C.

Retaining terms (A) and (B), but assuming term (C) is

negligible, the result for the inviscid case is

1/2
t 3R xp/[p. (T } - p3(O} ]

0 10
1/1 2 Re g  1 2 - 1/2 dx (1f/R{ (-(+3) - x + 4 - -"--"3)

Cfor R --R . This is an elliptic integral. However, analytical
0 0

results require numerous tedious transformations to arrive at

standard forms, and tabular results of the subsequently required

values for the three types of elliptic integrals are not readily

available. Numerical integration was employed as a simple

alternative to generate the profiles of figures 20, 21 and 22.

Dergarabedian's experimental results, which are expected to

include thermal effects and which closely approximate the

analytic results of Ting (recall Ting's analysis includes an

elastic term), see figure 17, are also shown in figures 20 and

21. From the lack of agreement between these data and the

theoretically generated results, it is apparent that the excluded

effects are very important. Inertia also appears to be more

important than viscosity in this situation.
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Imposed Flow

To investigate the effect of an imposed elongational flow on

a spherical cavity, an attempt was made to calculate the initial

deformation of this cavity in an elastic solid and also in a

viscoelastic liquid. The cases considered were a cavity with

constant volume, and one with a volume profile given by V(t).

The interior fluid was assumed to be inviscid, both were

incompressible, and inertial effects were neglected in the

equations of notion. This analysis follows the work of Fr'hlich

and Sack (32].

The elongational flow is assumed to be undisturbed at r=R,

where R>>

u (R,o,t) = 2e(t)RP 2(cos ) (72A)

u (R,e,t) = ;(t)RP,(cos *) (72 )
e 2

in spherical coordinates, where P is the second Legendre

polynomial

The formalism of Happel and Brenner [38] can be used to
generate the velocity field for a Newtonian fluid in terms oi

spherical harmonics. The mathematical property of Legendre

polynomials

Pi(e) sin 9 de = 0, itfo (73)

means that no net change in cavity volume can result from any

term in a series expansion for v except the spherically
Sr

symmetric P term. Thus, the radial velocity at the gas-liquid
0

interface is initially given by

u (r=a) = a(O) (74)

r

i(0) = V(O)/(4a 2  (75)

for any given volume profile.

Solving for the velocity field, temporarily ignoring the

zero tangential stress condition at the surface, but requiring

that

u (r=a) z 0 (76)
9
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the velocity profile exterior to the spherical body is

a&. 3a 5a S .ur = -ia * -r- - * 2r] r (cos P) (771)

a d
u= - (cos (r] (77B)
e 7-1 r dP2

Calculating the tangential stress at the surface

(ra) = . d (cos *) 1 0 (78)
re de2

Additional velocity components, which decay as r increases,

can be superposed onto this solution of the linear equations to

give a combination which satisfies the desired zero stress

condition. The result becomes

a. a
u = --a + 2eP (cos e)[- -7r + r] (79A)
r rL  2 r

d
u= (-)- (cos ) (79B)

this axially symmetric velocity field can be recast as a stream

function given by

2. 3 3 e 2
= [a a * (a -r )-sin e] cos b (80)2

In dimensionless terms this becomes
3 2

S= u[ (1-X)(1-M ) (80')

where

= coS a

x = r/a

* = a/(a;) (81)

3.
* = P/(a e)

Streamlines for various values of a are shown in figures 23,

24, 25, & 26. The simplicity of this solution suggests that, at

least for creeping flows, initial problems are tenable

analytically. Also, the form of the solution and the streamlines

confirm that the babble will deform, and that techniques for

nonspherical surfaces are necessary for subsequent work.
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A Perturbed, Growing Cavity

The effect of nonsphericity is studied through the

specification of an artificial situation. Assume an inviscid

cavity is generated, with a fixed, specified shape which is a

slight perturbation from a sphere. Also assume that the value of

the equivalent radius of the cavity is given as a function of

time, and that inertial effects are negligible in the Newtonian

surrounding fluid.

Specify the shape, for small parameter e ,as

R(t) = a(t)[1 + tf( )] (82A)

max[f(u) ] = 0(1) (82B)

= cos * (82C)

= fluid viscosity

Perform a perturbation analysis

(0) (1) 2_+= _ 4_ O~t ) (83A)
(0) (1) 2

p = p 0+ p 1 O(Cr ) (83B)

The geometric perturbation function f(u) can be expanded as

a summation of surface harmonics, P (.). If a trial function
n

f (i) is chosen1
f (M) = P 2() (84)

1 2 (4

and the expansions of Cox [20] are applied, then it is easy to

show that

a 2 2 2
= -- a r (3;P (,u) (a/r) [3(a/r) - 2]} * O(+ ) (85A)

r 2
•a '  . t/L 2)

= 0 * r 2.- - (u-) + Ot(2 (85B)

The homogeneous nature of the boundary condition applied at the

surface, zero tangential stress, means that this velocity profile

is also valid for a linear viscoelastic fluid. Again, as in the

previous result, the creeping flow problem has been shown to be

straightforward and amenable to a perturbation analysis.
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PROPOSED PRELIBINARY ANALYSES

Elasticity, Surface Tension and Thermal Effects

The result of Fogler and Goddard, equation (60), and of

Ting, equation (65), can be solved for more parameter values to

generate profiles like those in figures 20, 21 and 22. With

carefully chosen values for these physical constants, i.e.

systematic departures from the values expected for pure water,

dilute polymer effects on spherically symmetric growth are

expected to be demonstrated to be minimal.

Imposed Flow

First, the analyses in the preliminary results section under

this subheading require completion. In addition, the initial

deformation of a spherical cavity under other imposed flows, such

as simple shear or the combination of shear and vorticity

afforded by an orthogonal rheometer, can be calculated. The

stress field should also be evaluated with particular attention

paid to changes in the magnitude of normal stresses. These

attempts should employ various constitutive relations, with

parameters corresponding to liquids ranging from a purely

viscous, to a completely elastic material.
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V U&TIBlJZ PLAS and GOALS for this Research

The preferred goal of this research is to determine, by

means of theory and experiment, whether a model system consisting

of a single bubble in a well-characterized non-Newtonian flow

exhibits the gross effects of cavitation inhibition.

THEORETICAL

Most of the preceding pages have been devoted to an

introduction to the approaches and ':echniques available for

theoretical analysis of a bubble system. At this stage, it is

impossible to predict which single technique will be most

important. All will probably become necessary.

However it is achieved, the resultan:t theoretical system

should be flexible and capable of including various flow

configurations. This is expected to allow some evaluation of the

importance of various factors within a flow, such as vorticity

and shear rate. A procedure which may be particularly important

is a search for an imposed flow which allows a steady stat=

nonspherical shape of a bubble with constant internal pressure.

The existence of such a flow is suggested by the first special

case mentioned by Rallison [71], the "weak flow" conditions. For

a bubble, the viscosity ratio A (23a) is very small, so the

requisite flow strength for equilibrium might be too low to

generate important nonspherical effects. If this is not the

case, it is possible that the change in cavitation intensity

noted by Ting [82] will be manifest in a change of shape and/or

volume of the steady state cavity. This is likely to be a muciL

simpler analysis than any including bubble growth, especially it

ellipsoidal harmonics are applicable.

Just as Pearson and Middleman's analysis gives some basis

for the evaluation of constitutive relations, the results here

may be be of value in the assessi.,ent of constitutive accuracy.

Even without experimental results for comparison, physically

unreasonable results may eliminate certain equations. With

experimental data, still closer scrutiny should be possible.

The problems expected here are numerous, particularly since
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the nonlinearity of the complete equations of motion makes

analytic solutions unlikely. Exact solutions for limiting cases

will be found whenever possible, and the need for a great deal of

effort and cleverness is anticipated in order to qenerate

numerical solutions.

EX PER IMENTAL

Two major types of experiments are envisioned in plans for

this research: exploratory and confirmatory. Exploratory

experimentation is conducted concurrent with theoretical work.

Its purpose is to guide the development of theory, eliminating

unimportant approaches and distinguishing physical effects from

purely mathematical ones. From this initial type of experimental

work and theoretical analysis, a full theoretical model should

arise, and final testing and adjustment is made throuqi.

"confirmatory" experimental trials.

Before any of this work begins, logistical and technical

problems must be solved or circumvented. These include choice of

materials and apparatus, procurement of tunds, and even ordering

and delivery constraints. Once the apparatus is assemble!1,

techniques must be learned and noned, and trial runs conducted.

A long process is expected to precede any experimexits whicn

approach the model system. Initial decisions coi.cerning

apparatus will depend on preliminary analys-s and past work for

guidelines. Careful choice and characterization of iluids must

t c. made, th-n means must be devised for flow generation, buob][c

generation, and the recording and analysis of bubble behavior.

The reference fluid will, of course, be water, while the

test fluids are expected to be dilute solutions of polymers such

as polyethylene oxide [14, 27], quar gum L 2 7 ], or polyacrylamide

[15, 831. The choice will depend upon the behavior of candidatE

additives under some new conditions which may be present ir1 tie

experimental procedure. All fluids must be characterizea

viscometrically, and also checked for variations in physical

parameters, such as surface tension, trom the values for pure

water. The flow apparatus used to qenerate the imposed flow may
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also be useful for fluid characterization.

The specific machinery necessary for flow generation will of

course depend on the desired flow. A simple one-dimensional

shear flow can be generated by a two-belt apparatus (see figure

27a). A two-dimensional extensional flow results from a

four-belt apparatus (see figure 27b). A Couette flow can easily

be generated experimentally (see figure 27c). Perhaps the gost

flexible, single flow qeometry is present in an orthooondl

rheometer (figure 27d). By varying the offset, rotation rate and

plate gap, the amount of vorticity and shear present in th,

undisturbed flow can bc varied independently. Hakimi ana

Schowalter [37] used just such a device in their experimeirts with

drop deformation. Thus tue technology for and components of a

unit should be available in th: Princeton University Department

of Chemical Engineering, where this research is being conduct-j.

(a) (W) (c) (d)
FTGURE 27 Possirle Experimental Flow Apparatus

The most versatile and sophisticated of the devices which

may be applicable to flow generdtion, and will detinitely be tht

major means of rheological chiracterization, is a FHEOMETRICS

Mechanical Spectroreter , which is now under order by this

department. Several flow geometries are available in this

d-vice, including Couette flow and orthogonal rheometer flow,

with a wide range or operating parameters. This instrument has

the added aivantage of capability for making sensitive dynamic

measurements of macroscopic elastic effects such as the total

normal force on a rheometer plat*. By compdring these

measurements for identical imposed flows, with ana without a

cavity present, additional conclusions with respect to concepti
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such as flow alteration may be possible.

Bubble generation can take on two levels of sophistication.

If a steady state bubble shape is found to be achievable, then

cavity formation for such a flow may be as simple as injection of

a measured volume of vapor or gas into the static fluid.

To produce cavitation bubbles for dynamic study the

technique with the largest probability of success is the use of a

laser to trigger nucleation. A Q-switched ruby laser has been

used to successfully generate volumes in pure water which are

well-modelled as single cavitation bubbles (52, 53]. The

Q-switch is a shutter which contracts the pulses of the ruby

liser into smaller segments of length 30-50 nsec. In this short

time, about 1 J of energy is introduced into a small region of

the fluid. Rvailable references on lasers [51] show a wide

variety of similar devices to be evaluated.

The recording system is also very different for the steady

state or dynamic bubble. The steady state shape requires only

single photographs of two or three views of the bubble. With

adequate lighting, a simple Polaroid camera should suffice,

althouigh slide capability would be desired to allow projection of

the imaqes.

rhe dynamic bubbles are expected to change on a time scale-5
of about 10 sec. or less (figures 20 and 21). Recording of

such rapid events photographically requires a very high framing

rate. Cameras with rates this high, and higher, are available

[75], and have been used to record bubble dynamics (figure 28).

These cameras, however, are extremely expensive, e.g. the Cordin
6

31 with framing rate of 2x0 pictures per second costs

approximately $100,OCO. Rental of such units is also available.

This is an attractive proposition, especially for the early

trials when needs are not completely known. If the flow is not

axisymmetric, more than one view of a bubble will be necessary

for analysis. Should reproducibility be found to be excellent,

then photography of the different views in different trials will

he acceptable; if not, an optical system for recording multiple

images on onp frame may be necessary.
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TO*

7P J

Dynamics of a hecr-produoed %pherical bubble near a solid boundary. The
framing rate is 75000 framesls, the maximum bubble radius R. = 2-0 mm, the dis-
tance of tla~q bigbble centre from the boundary 6 = 4- ram and the size of the individual
frames is 7-2 x 4-6 mm.

FIGURlE 28 [53, P.400]

Analysis of the massive photographic record anticipated will

probably require countless projections of individual images, and

subsequent fitting to analytical expansions. Fortunately,

exploratory trials will probably be most useful for qualitative

results, reducing the need for exhaustive examination of the

images. Later, a good theoretical model wiil give accurate

predictions, minimizing the deviation from predicted shapes and

the need for fitting.
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The proposed overall

system is liagranaticallv EA

presented in figure 29.

Of course, the details
GROUND GLASS PLATE

are dependent upon future

developments. RB AE-EO CL

ROTATING
START - JDRUM OR MIRROR

CAMERA

Bloc diagram of experiment31 setup.

FIGIRE: 29 [5z, P. 23 ]

Many unforeseeable problems are expected to arise in the

course of this work. others may be at least partially

anticipated and must be resolved for success to De achieved.

Possible problems include:

1) Multiple bubbles

The ruby laser is thought to cause nucleation on dust

particles [771. he polyine solute molecules may act as

n'JcleAtino centers, the result being formation of multiple

bIibl s. A possible solution would be to split the laser ati to

focus multiple beams on a single point from many angles.

2) Polymer degradation

Thp laser may also cause thermal degradation ct

polymer. This is very likely, at least in the immediate vicinity

of thp focai point, and must be evaluatea for macroscopic effect.

3) Surface tension

Impurities in water are thought to change the dynamics

of a single bubble in Stokes flow by altering surface tension.

Polymer molecules might cause a similar phenomenon.

4) Vapor pressure

Is the vapor pressure of a dilute solution the same as

that of the solvent? Measurements need to be taken here. one

possibility for testinq the coupled effects of 3) and 4) is d

static bubble comparison between water and the solution, since

surface tension and vapor pressure are the major determinants ot

54



equilibrium radius.

5) Thermal effects

Error may be introduced into the system by a change in
thermal properties of the liquid or laser heating effects. Heat

effects frow photographic lighting can be minimized using proper
filters.

6) Wall effects

By varying apparatus or bubble dimensions, it should be

possible to estimate the effects of the finite extent of the

experimental fluid. In using the Mechanical Spectrometer, normai
force readings may also give an indication of the ditterence

between theoretical flows imposed at infinity and reai flows.
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